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This paper analyses the development, according to the Navier-Stokes equations, 
of the two-dimensional flow in the neighbourhood of the rear stagnation point on 
a cylinder whichis set in motion impulsively with constant velocity. The local flow 
is idealized to the extent that the cylindrical boundary is taken to be an infinite 
plane bounding a semi-infinite domain of fluid. The velocity field is taken to be a 
linear function of the co-ordinate measured parallel to the boundary, and the 
initial flow is taken to be the (unique) irrotational form of such a field, namely, 
inviscid flow away from a stagnation point. Thereafter this irrotational flow is 
maintained as the outer boundary condition at a large distance from the boundary. 

It is suggested that, outside a viscous layer on the boundary, the asymptotic 
flow for large times is described by a similarity solution of the inviscid form of the 
governing equation, with a length scale normal to the boundary which increases 
exponentially with time. This inviscid solution has a steady velocity of slip along 
the boundary which is equal but opposite to that of the initial flow, so that the 
flow in the viscous layer ultimately becomes the well-known stagnation flow 
towards a boundary. The suggestion is supported by a numerical solution of the 
initial-value problem. 

1. Introduction 
It has been known for many years that there are no solutions of the laminar 

boundary-layer equations representing steady flow near the rear stagnation point 
on a cylinder which is held at rest in a uniform stream. This result has, with some 
justification, been taken as further evidence that the steady flow past cylinders 
for which the classical theory predicts a rear stagnation point must exhibit the 
phenomenon of separation, and that the whole idea of a stagnation point at which 
fluid leaves the cylinder is not a sensible one in a fluid of small viscosity. 

During the development of a flow from rest, however, the situation is signi- 
ficantly different. If we take, for simplicity, the case in which the cylinder is 
suddenly given a constant velocity at some initial instant, then the initial flow is 
necessarily the classical irrotational one. In  the early stages of the motion, there- 
fore, the flow outside the boundary layer does have a rear stagnation point and it 
seems worth while to enquire how the flow in the neighbourhood of this point will 
develop in time. 

The appropriate idealization appears to be as follows. We consider a semi- 
infinite domain of viscous incompressible fluid bounded by an infinite plane 
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a = 0,  the whole system being initially at rest. At time t = 0 the fluid is instan- 
taneously set in motion described by the stream function 

$ = -wz, (1) 

where a is a positive rate of strain and the fixed origin of co-ordinates (a, 3) is in 
the fixed-plane boundary. For subsequent times the irrotational flow (1) is 
maintained at a great distance from the boundary. 

Since the development of the flow is determined by only two parameters, a and 
v ( = kinematic viscosity), the scales of length and time areuniqueand therelevant 
non-dimensional variables are 

If we now make the assumption, consistent with the initial and boundary 
conditions, that $h is proportional to x for all y and t ,  we have 

$h = - XF(Y, t )  

and, for the non-dimensional components of velocity, 
(3) 

Thus the equations of motion yield a differential equation for F (Schlichting 1960, 

P. 79) Fut - F i  + FFyy - F,,, = function of t only. 

The initial and boundary conditions are 

(5) 

(6) 
When t is small the solution may be obtained by the method developed by 

Blasius (1 908). Thus the early stages of the diffusion of the initial vortex sheet at 
y = 0 are described by the dominant terms in (6), namely, 

and the solution satisfying the boundary conditions must, on dimensional 
grounds, be of the form 

For small values of t ,  therefore, the variable 7 = y/t* is more appropriate than 
y itself, and when one takes into account the relatively small inertia terms in (B), 
by a straightforward iteration, one finds that an expansion of the form 

I F(Y, 0) = Y (Y * O ) ,  
F(0, t )  = F,(O, t )  = 0 

F(Y, t )NY as Y + W ,  

(t  + 0) ,  

the last of which reduces the above differential equation to the form 

F,t-F~+FF,,-F,,, = -1.  

Fut-Fuyy = 0, (7) 

(8) F = t* x function of (y/t*). 

is required. This is the structure of the Blasius series solution in. the present 
problem. 
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The detailed solutions for thef,(r) need not concern us at this stage. It is 
sufficient to note that the first few functions have been found explicitly in a more 
general context (Blasius 1908; Goldstein & Rosenhead 1936). According to the 
partial sum of these fist few terms, the stress on the boundary vanishes at a 
certain O( 1) value oft, and subsequently changes sign. Thus the general features 
of the predicted streamline pattern at times a little later than this particular 

I * X  

FIGURE 1. The nature of the streamlines after the onset of reversed flow. 

instant are those of the accompanying sketch (figure 1). Inasmuch as the pre- 
dicted time at which the flow reverses near the boundary is much greater than 
those for which the asymptotic expansion (9) is known to be valid, there is no real 
assurance that the phenomenon actually occurs. But the theory seems to be in 
general agreement with observations and there is little reason to doubt that it is 
qualitatively correct. 

At  this stage it is necessary to emphasize an important point which seems to 
have been overlooked in the literature. It has been usual to identify the pheno- 
menon of reversed flow with boundary-layer separation and to assume that, once 
this has occurred, the outer boundary condition must be affected and that the 
whole problem becomes conceptually unsound. Whether or not one assigns the 
name separation to the phenomenon is, of course, purely a matter of taste. But 
there is no justification whatever for supposing that the outer boundary condition 
is affected. The initial-value problem presumably has a well-behaved solution for 
all finite values oft, and there is no reason to doubt the applicability of the solution 
to the physical flow. In  particular, no trouble arises from the idealization of the 
flow near the rear stagnation point. The natural length scale in (2) involves the 
viscosity. Thus, for any fixed value of t, however large, the thickness of the 

11-2 



164 Ian Proudman and Kathleen Johnson 

rotational domain of the flow becomes arbitrarily small compared with the length 
scale of the cylinder as u -+ 0. Moreover, the non-dimensional time t does not 
involve the viscosity, so we must conclude that separation, in the less trivial sense 
of a substantial modification of the external flow, cannot ‘begin’ (in the limit 
u + 0 )  at any finite time. 

Appreciation of the point discussed in the preceding paragraph raises the 
interesting question of the nature of the solution of (6) for large values of t. 
A suggested form for this asymptotic behaviour, with supporting numerical 
evidence, is the central contribution of the present note. 

2. The asymptotic solution for large t 
By the time the state sketched in figure 1 has been reached, the length scale 

normal to the boundary (measured by yo, say; see figure 1) is O( 1) and viscous and 
inertia forces are of comparable importance. For subsequent times, one would 
expect this length scale to increase at an ever increasing rate, under the action of 
the convection field, thus rendering the viscous forces less and less important over 
most of the flow. It seems likely therefore, that most of the asymptotic flow is 
governed by the inviscid equation, and, further, that there are sufficiently few 
parameters involved for a similarity solution to be relevant. 

We therefore look for a solution of the inviscid equation 

FgL--F;+FFvg = - 1  
in the form 

Substituting (11) in (10) we get 

Fc‘(Y7 t )  = 4t)f (7), 7 = y/h(t) .  

A 
- = constant = k 
h 

so that 

or* h = e M .  
Equation (12) now becomes 

(13) 

(f - ky) f” - f ‘2 = - 1, (14) 

of which the general first integral is 

Cqky - f )2 = (1 -f’2) (::;Jk> ___ 

where c is a constant of integration. The boundary conditions (5) give f N y as 
7 + co, so that we must have k 2 1. Moreover, in (x, 7)-space, the whole of the 
region of (2, y)-space represented by finite values of y collapses to a thin layer on 
the boundary, so that the kinematic boundary condition on the normal component 
of velocity may be applied to the solutions of (15). Thusf(0) = 0, which gives 
f‘(0) = - 1 for all k 2 1. Hence all of the flows represented by (15) for k 2 1 are 

* More strictly, log h - kt ~ k s  t 4 a. The analysis is only approximate, and there is no 
assurance that (13) is free from an m i t e  multiplicative error as t + 00. 
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unsteady rotational transitions between a steady rearward stagnation flow at 
infhityand asteady forwardstagnation flownear the boundary. In  thespaceof the 
original co-ordinates (x, y ) ,  this steady forward stagnation flow near the boundary 
becomes the outer boundary condition at infinity, and we may expect an equi- 
librium boundary layer to develop on the boundary. 

It does not seem to be easy to establish definitely the appropriate value of k on 
simple analytical grounds, though it is highly probable that the proper choice is 
k = 1. For several reasons, the solution for k = 1 is distinct from all the others. 
Most important, perhaps, is the fact that this is the only case that yields an 
exponential decay of vorticity away from the boundary; a condition which is 
commonly used (though with less justification here) to render solutions unique. 

Assuming that the result k = 1 is correct, we may easily complete the integra- 
tion to find that 

(16) 
2 

f =  y - - ( l - e - + ) ,  

where c is an arbitrary constant, presumably determined by the early develop- 
ment of the flow. The solution (16) is not uniformly valid near ? = 0. For fixed 
large values of y as t + 00, (16) yields the steady flow 

C 

-Y, 

which becomes the outer boundary condition for the viscous flow near the 
boundary. Thus the asymptotic solution for all finite values of y is the well-known 
steady forward stagnation flow found by Hiemenz (1911). 

In the following section, an approximate numerical solution of the full initial- 
value problem is presented. This numerical work was undertaken partly to test 
the general idea of an asymptotic similarity solution, partly to test the chosen 
value of the parameter k, and partly to determine the unknown constant c in (16). 

3. The numerical solution 
Equation (6) was solved in the form 

with the appropriate boundary conditions, 

h(0,t) = 1 ( t + O )  

h(y , t )  - 0 as y+00. 

As there is a singularity in the initial conditions at y = 0, the integration was 
started at  t = 0.0025 and the initial values of h were calculated from the first two 
terms of the Blasius series solution (9). 

Several difference formulae for solving the diffusion equation are known to be 
stable to small numerical errors. One of these, 
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where hi(t)  is the value of h(y ,  t )  at ( iAy ,  t ) ,  was taken as the basis for the difference 
equation used to solve (17). 

For the stability of the diffusion difference equation, the inequality At/Aya < 4 
must be satisfied. Another condition on A y  and At is obtained by considering the 
flow at a large distance from the boundary. If this is described by (15), then the 
disturbance to the initial potential flow increases exponentially with time. To 
allow such an expansion to take place in the region where h = o( l), the relation 
A y  & eMAt must be satisfied there. 

The asymptotic condition h N 0 as y -+ 00 was applied by taking any value of 
h < equal to zero. 

In  the first stage of the solution the ratio At/Ay2 was taken to be 4 and the 
increments A y  and At were increased at suitable times to match the expanding 
length scale. Near the time of onset of reversed flow a new grid system was intro- 
duced to allow for the rapid change in h near the boundary and the increasing 
length scale elsewhere. This was achieved by taking A y  small near the boundary 
and doubling A y  at suitable values of y ,  whilst keeping At constant for the rest of 
the integration to t = 5.  

A grid size was chosen that gave the smallest errors compatible with a reason- 
able computing time, when the difference equation (18) with the diffusion term 
neglected was used to integrate the similarity solution (16). 

The results of the numerical integration of the full equation (1 7) are presented 
in figure 2. 

From (16) we have 
log h = - cye-t + log 2 ,  (19) 

and we see that if the similarity solution holds, then the graph of log h against 
y e J  should give a straight line of gradient c.  In  figure 2, the values of logh are 
plotted against y e-(1-3s) for t = 3.5,4,4.5 and 5. The departures from the parallel 
straight lines are greater for the smaller values of y ,  which is to be expected. The 
results which would be obtained for t = 5 if k = 0.9 or k = 1.1 are indicated by 
the broken lines. 

The reason why the lines for different values of t  are not coincident can be seen 
by appealing to the second term of the asymptotic expansion for large t .  One 
solution involves fractional powers of y eJ near y = 0 and seems unlikely to be 
relevant. Neglecting this solution we obtain 

where A is a constant to be determined by matching the solution to the forward 
stagnation flow near y = 0. For the larger values o f t  the intercept approaches 
log 2, which agrees with the numerical results. 

Near the boundary, the solution agrees remarkably well for the larger values of 
t with the known solution for steady forward stagnation flow, thus codirming the 
predictions of the analytical solution. 

The value of c calculated from the gradient of the straight lines in figure 2 is 
c = 3.8. 
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Thus the numerical solution gives reasonably clear evidence that the similarity 
olution (16) is the rele vant asymptotic solution for large t. 

6-(t--9.6) 

FIGURE 2. The numerical (h, y e-(t-3.5)) relations for t = 3.5, 4, 4.5 and 5. 

4. Some condusions concerning the starting process 
Perhaps the most interesting implication of the solution considered in the pre- 

ceding sections concerns the rate of growth of eddies behind a cylinder in a stream. 
According to the present view, separation of the main flow past a cybder  cannot 
begin at any finite time in the limit as v -+ 0. Yet observational evidence (see, for 
instance, the famous sequence of photographs due to Rubach (1914), and subse- 
quently reproduced in many standard texts including Goldstein (1938)) ap- 
parently tends to conflict with this view. For the eddies behind a circular cylinder 
are observed to grow to a size comparable with that of the cylinder in the time 
that the cylinder takes to travel a few diameters, which strongly suggests an 
inviscid time-scale (in agreement with the Blasius theory) for the development of 
substantial disturbances to the initial irrotational flow outside the boundary 
layers. 

However, the solution (16) provides a simple explanation of the apparent 
discrepancy. For a cylinder of radius a set in motion with velocity U ,  we have 

CI = O(U/a),  
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so that (13) gives, for the width of the layer of appreciable rotational flow 
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Hence iis of order a, representing substantial disturbance of the irrotational flow, 
when 

f = O(;logF). 

Thus the relevant time scale is almost inviscid, depending as it does on only the 
logarithm of the Reynolds number. Indeed, at the Reynolds numbers for which 
it is possible to maintain reasonably laminar flow, even during the starting 
process alone, (22 )  would yield a very modest multiple of a/U.  

We should perhaps add here that there is probably no particular instant at 
which separation of the main flow begins. The only special instant during the 
starting process is the one estimated by Blasius, and later by Goldstein and 
Rosenhead, for the start of reversed flow in the boundary layer. The numerical 
solution of $ 3  estimates this time as t = 0.64, which agrees, to this order of 
accuracy, with the estimate obtained by Goldstein & Rosenhead (1936). 

A final point worth mentioning concerns the viscous shear layers that bound the 
separated flow region in the h a 1  steady flow past a cylinder. It is sometimes 
suggested that these layers are shed from the back of the cylinder, under the 
influence of the overall convection field, during the starting process. The solution 
(16) shows that this is not so, a t  least as far as the local mechanics is concerned. 
The convection field seems to be curiously inefficient in removing intense vorticity 
from the boundary. Apparently any fluid particle with intense vorticity is quickly 
forced to move towards, rather than away from, the boundary. Thus, even in a 
strictly inviscid fluid, an initial layer of intense vorticity near the boundary would 
remain there for all time. 
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